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Abstract A 10 Hz sampling frequency GPS station was installed near L’Aquila a few days before the
6 April 2009 Mw 6.1 earthquake. It recorded displacement waveforms during the main shock and the
largest Mw 5.4 aftershock of 7 April. The horizontal components of the main shock contain a high-amplitude
(43 cm peak-to-peak) nearly harmonic (1Hz) wave train not evident in other nearby instrumental records.
The persistency of this feature during aftershocks recorded by a temporarily colocated seismological station
highlights a local site effect. Traditionalmodels based on near-surface velocity structure and topography variations
fail to reproduce the size and frequency band of the observed amplified motion. The amplified wave train can be
explained by a low-velocity fault zone layer below the station. This model fits the delay of the large-amplitude
nearly harmonic wave train after the S wave phase and is consistent with the variation in the fault excitation
efficiency between the two shocks in relation to their different source depth and location. Synthetic calculation of
trappedwaves in amodel consisting of two quarter spaces separated by a 650mwide low-velocity zonewith 50%
velocity reduction and Q value of 20 fit well the observed anomalous record. The parameters of the model fault
zone layer are consistent with geological evidence of a broad damage zone adjacent to the station and a
similar site response found in this crustal zone with ambient noise. Results of shallow seismic surveys and
sonic logs from deep wells provide independent constraints on the host rock velocities.

1. Introduction

On 6 April 2009, at 01:32 UTC, central Italy was struck by a Mw 6.1 earthquake [Scognamiglio et al., 2010]
causing about 300 casualties and extensive damage in the L’Aquila town and in several nearby villages
(Figure 1). The main shock was preceded by a preseismic sequence with the largest (Mw 4.1) foreshock
occurring 1 week before, and it was followed by a Mw 5.4 shock on 7 April to the southeast and by a Mw 5.2
shock on 9 April to the north (Figure 1). The threeMw> 5 strongest shocks were followed by a long aftershock
sequence [Chiaraluce et al., 2011; Valoroso et al., 2013, and references therein]. The region is known to be
highly active seismically as documented in historical [Working Group Catalogo Parametrico dei Terremoti
Italiani, 2004] and instrumental [Chiarabba et al., 2005] catalogs. The main shock epicenter was located a few
kilometers southwest of the town of L’Aquila [Chiarabba et al., 2009] and the focal mechanism (Figure 1)
suggests that the main shock occurred on a NW-SE striking and 50°SW dipping normal fault [Scognamiglio
et al., 2010], whose surface projection corresponds to the Paganica fault [Bagnaia et al., 1992; Boncio et al.,
2004]. This mechanism is in agreement with the NE-SW direction of the crustal extension in the Central
Apennines, amounting to 2.5–3mm/yr in a 40–50 km wide belt [D’Agostino et al., 2011]. The GPS-derived
static offsets [Anzidei et al., 2009; Cheloni et al., 2010] and the deformation field obtained by InSAR
(Interferometric Synthetic Aperture Radar) [Atzori et al., 2009;Walters et al., 2009] have been used, separately
[Cheloni et al., 2010; Cirella et al., 2012; Serpelloni et al., 2012] and jointly [Trasatti et al., 2011; Cirella et al., 2012;
D’Agostino et al., 2012], to obtain the coseismic slip distribution on the causative fault. In addition, the
kinematic rupture process of the earthquake was determined by a joint inversion of the geodetic results
combined with the strong ground motion data [Cirella et al., 2009, 2012] and with the high-rate (10Hz and
1Hz) GPS (HRGPS) time series in the near field [Avallone et al., 2011]. The data recorded by the HRGPS CADO
site (Figure 1) provided satisfactory ground displacement waveforms for the two largest shocks and is the
focus of the present study.
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The CADO HRGPS is installed on a cliff close to a complex faulting system located at the eastern margin of the
Mount Ocre ridge. In the CADO record of the main shock, Avallone et al. [2011] noted the presence of a nearly
harmonic high-amplitude displacement wave train several seconds after the beginning of the dynamic
deformation. In the following sections we describe the three-dimensional motion recorded at CADO and
investigate the possible origin of this high-amplitude wave train. We show that conventional models of site
effects cannot capture the unusual signal at the CADO record. We demonstrate with synthetic waveform
calculations that the anomalous large-amplitude signal can be generated as a consequence of a seismic
trapping structure below the station. Vibrations of large rock blocks can also contribute to the
examined signal.

2. Local Site Conditions of CADO

The site CADO is on the crest of a narrow ridge which is elongated in the NW-SE direction and bounds the
Aterno Valley to the west (Figure 1). In particular, the site is about 50m from a cliff associated with the NE
dipping normal fault of Monticchio-Fossa (Figures 1–3). The western slope of the ridge is in turn crosscut by a
system of NW-SE trending and SW dipping Quaternary normal faults. One of these faults is a few tens of
meters from the GPS site which lies in the footwall side on limestones (Figure 2). The ridge is formed by shelf
limestones (Mesozoic-Miocene) and by thin flysch sequences (Upper Miocene), which are exposed (Figure 2)
in the footwall and in the hanging wall side of the western fault system, respectively [Foglio CARG, 2009].
These shelf carbonates were stacked and deeply deformed during the Mio-Pliocene compressional tectonic
phases [Ghisetti and Vezzani, 1997] and subsequently dissected during Quaternary extension that generated
normal fault systems and reactivated inherited structures [Galadini, 1999].

Due to the intense deformation related to thrust tectonics and normal faulting, limestones in the area are
highly fractured. Along the ridge, this is reflected by several dolines that document intense karst processes
and quarries exploiting the highly fractured limestones outcrops (Figure 3). Sonic logs from deep wells
(UNMIG well database, http://unmig.sviluppoeconomico.gov.it/videpi/en/gpozzi.htm) provide the following
reference P wave velocity ranges for sedimentary sequences in the region: 5.5–6.0 km/s for Mesozoic
shelf limestones, 4.7–5.5 km/s for Miocene limestones, and 3.5–4.0 km/s for Upper Miocene flysch deposits.
High-resolution tomography surveys performed across the Aterno Valley, 3 km to the NE of CADO, indicate

Figure 1. Location map of the area associated with the L’Aquila earthquake. Black lines correspond to the main active faults around the city
of L’Aquila [Boncio et al., 2004; Roberts and Michetti, 2004; Galli et al., 2008; EMERGEO Working Group, 2009; Boncio et al., 2010; Foglio CARG,
2009]. The white stars and the “beach balls” show the locations [Chiarabba et al., 2009] and the focal mechanisms [Scognamiglio et al., 2010]
of the main shock (Mw 6.1 on 6 April 2009) and of the strongest aftershock (Mw 5.4 on 7 April 2009), respectively. The black diamond rep-
resents the position of the CADO high-rate GPS site. The black square indicates the area represented in Figure 2.
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considerably lower P wave refraction velocities with respect to the well data: 4.0–4.5 km/s for the Mesozoic-
Miocene limestones and 3.2–3.5 km/s for theMiocene flysch imaged at 200–500m depth below the Quaternary
sediments of the Aterno basin [Improta et al., 2012]. These low Pwave refraction velocity values were ascribed to
fractured carbonate rocks.

Figure 3. A 1 m resolution LIDAR (Laser Imaging Detection and Ranging) image (modified from Civico et al. [2013]) highlighting the dolines
and quarries of the investigated area. The black square indicates the area represented in Figure 2.

Figure 2. Simplified geologic map focused on the Fossa–San Panfilo d’Ocre area (Figure 1) (modified from the Foglio CARG [2009]). The num-
bers and colors represent the different lithologies described in the legend below.
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3. Analysis of the 3-D High-Rate GPS Motion of CADO

The L’Aquila main shock was recorded by a number of continuous HRGPS stations, belonging to the Rete
Integrata Nazionale GPS (RING, http://ring.gm.ingv.it) and to other regional networks [Avallone et al., 2011].
After the occurrence of the largest foreshock (Mw 4.1 on 31 March 2009), a few days before the main shock,
some survey-style GPS benchmarks were also installed [Anzidei et al., 2009]. For two of these benchmarks the
receivers were set up with a 10Hz sampling frequency. Here we focus on data recorded at the CADO HRGPS
site (Figure 1). The analysis of CADO data by Avallone et al. [2011] yields 2σ noise levels of 0.72, 0.86, and
0.76 cm for the North, East, and Vertical components, respectively (Figure 4, left).

The HRGPS time series at CADO indicates that the earthquake-related deformation (T1) starts about 3.5 ± 0.1 s
after the event rupture nucleation (T0) (see Figure 4, left). The vertical component clearly shows a subsidence
that occurred in three steps. The projection of the 3-D particle motion (Dynamic Content S1 in the supporting
information) indicates that in the first 5.1 ± 0.1 s of the coseismic dynamic displacement the CADO motion is
mainly dominated by a subsidence related to the fault slip. This subsidence can be divided into two phases.
The first one, spanning 1.1 ± 0.1 s, shows the S wave arrival (S) and describes a low-dipping (~15–20°) subsi-
dence in the NW direction (first step) which reaches almost half of the final static offset on the horizontal
components. The second phase, spanning 4.0 ± 0.1 s, describes a mainly vertical two-steps motion accom-
panied by oscillations on the East component with amplitudes of ~10 and ~5 cm. At the end of this phase
(T2), about 5.1 ± 0.1 s after the initial motion (T1) (Figure 4, left), the vertical component has reached a value
(17.7 cm) larger than the final coseismic displacement (15 cm). Starting from T2, 4.0 ± 0.1 s after the S wave
arrival, the horizontal records at CADO have a strong oscillatory wave train, whereas the vertical component
shows an upward movement till its final static value. This wave train starts with a pulse having a very high
peak-to-peak amplitude totaling 36.4 cm in the east component and 22.6 cm in the north component
(Figure 4, left). The large initial pulse is followed by a number of nearly harmonic (around 1Hz) cycles that
decrease in amplitude and reach the final static horizontal offset after 4.4 ± 0.1 s (T3). The particle motion in
the horizontal plane (Figure 4, right) shows that the high-amplitude displacement totals 42.8 cm and mainly
occurs in the ~N58°E direction, fairly normal to the fault strike and to the direction of the static offset.

4. Origin of the High-Amplitude Nearly Harmonic Wave Train
4.1. Evidence of a Site Effect

Avallone et al. [2011] inferred a kinematic rupture model of the 6 April main shock through a joint inversion of
GPS-derived static offsets, strong motion data, and HRGPS time series. They showed that the high-amplitude
groundmotion in the timewindow T2–T3 is not reproduced in the frequency range 0.02–0.5 Hz. Therefore, an
alternative interpretation in terms of propagation effects is sought.

Figure 4. (left) HRGPS time series at CADO (modified from Avallone et al. [2011]). The dashed, solid, and dotted lines represent the North,
East, and Vertical components, respectively, with relative 2σ noise levels represented by the error bars. The two vertical lines (T0 and T1)
represent the time of the main shock occurrence [Chiarabba et al., 2009] and of the starting of the dynamic coseismic displacement,
respectively, whereas the background grey area corresponds to the time between the beginning (T2) and end (T3) of the nearly harmonic
high-amplitude phase. The S vertical line represents the arrival time of the S wave. (right) Particle motion of the CADO coseismic dynamic
displacement in the horizontal plane; the dashed line represents the static horizontal offset occurred between the time intervals T1 and T3 of
Figure 4 (left).
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The GPS monumentation at CADO consists of a 1.5m tall concrete pillar, on which the GPS antenna was
screwed and further fixed using cement (Figure S1 in the supporting information). One year after the L’Aquila
earthquake a seismological station equipped with a 5 s velocity transducer was installed a few meters from
the GPS benchmark. The main goals of this installation were to check the consistency of the response of the
GPS antenna with a free-field colocated instrument and to investigate the possible existence of site-dependent
systematic effects during earthquakes.

Many small-magnitude (M< 3) earthquakes were recorded during the acquisition of the colocated seismo-
logical station between 23 April 2010 and 31 July 2010 (Figure 5). Details on these aftershocks are listed in
Table S1. Consistently with the GPS trace, the waveforms of the aftershocks located near the main shock
hypocenter show amplitudes and durations greater in the horizontal components than in the vertical one
(Figure S2). Important insights come from the horizontal-over-vertical spectral ratio (HVSR) of rotated hori-
zontal components. The HVSRs are calculated by rotating the horizontal components with steps of 10° in the
range 0°–180° [Spudich et al., 1996] and, for each step, by dividing the horizontal spectrum with the vertical
spectrum. This is done for the GPS trace of the main shock and the Mw 5.4 aftershock, as well as for other
aftershocks seismograms and for an ambient noise record (Figure 5).

The HVSRs versus frequency and azimuth shown in Figure 5 were computed using the GEOPSY software
(http://www.geopsy.org) after applying to the data a high-pass filter at 0.5 Hz. The GEOPSY software is a tool
suited for microtremor analysis [Bard et al., 2010]. We used a time window of 12 s for the GPS and aftershock
recordings bracketing the most energetic part of the time histories, and the Fourier amplitude spectra were
smoothedwith a Konno and Ohmachi [1998] filter using a coefficient of 20 for the bandwidth. For the ambient
noise analysis of the temporarily colocated seismological station, the HVSRs of Figure 5 were computed using
60 time windows of 60 s duration after removing nonstationary disturbances using the antitrigger option of
GEOPSY that is based on a short-term average over long-term average ratio. We finally checked that ana-
lyzing noise records in different time periods does not change the shape of the HVSRs curve.

The results of Figures 5 and S2 indicate that the site is responsible for a significant amplification of horizontal
groundmotion around 1Hz compared to the vertical component. Usually, amplification is estimated through
spectral ratios relative to a reference site; however, in this case the lack of a reference site led us to use HVSRs
as a proxy. In Figure 5 we see that the 1 Hz amplification is independent of the source and nature of the signal
(weak and strong motions along with ambient noise in GPS and seismic instruments) and is strongly direc-
tional with amplitudes of HVSRs beingmuch larger at an azimuth of about 60° fromNorth, roughly transversal

Figure 5. (a) Location of the aftershocks (black circles) recorded by the seismological station installed from April to July 2010, a few meters from the GPS antenna (white diamond). The
larger and smaller grey stars represent the epicenters of the main shock and of the largest aftershock, respectively. The grey box indicates the surface projection of the previously pro-
posed finite fault model [Cirella et al., 2009; Avallone et al., 2011]. (b) The color contour plots are the HVSR of the rotated horizontal components of different types of signals: for the main
shock and the largest aftershock using the GPS waveforms, as well as for ambient noise and some aftershocks (underlined identification numbers in Figure 5a: 6,16,20,30, and 32) after-
shocks closest to the ruptured fault using the seismological records.
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to the strike of the faults in the region. This is a clear indication that independently of the possible source
contribution, the high-amplitude horizontal displacement has to be ascribed primarily to a site-dependent
propagation effect.

The outcropping rocks are limestones, although fractured and weathered, so a significant site effect caused
by a thick soft upper layer is not possible. Vertical velocity profiles of the uppermost layers were assessed
during the NERA (Network of European Research infrastructures for earthquake risk Assessment andmitigation)
Project [Rovelli et al.., 2013, http://www.nera-eu.org/] through ultrashallow active experiments using the MASW
(multichannel analysis of surface waves) technique. These seismic experiments yield a 1-D shear wave profile
through the inversion of the dispersion curves of Rayleigh waves (Figure 6).

The result suggests that the near-surface degradation of rock affects the uppermost 15m with velocities
ranging from 500 to 650m/s. Below this shallow layer, the velocities are of the order of 1000m/s with an
impedance contrast of about 2. This feature rules out a significant amplification around 1Hz since the transfer
function of this 1-D model only produces a small amplification around 10Hz.

4.2. Topographic Effect

As mentioned, the HRGPS and the colocated seismological station are located at the edge of a cliff, a few tens
of meters from the slope break (Figure 3), with a variation of elevation by 350m and a steep (about 30°) slope.
Strong topography variations are known to cause local amplifications [Spudich et al., 1996; Geli et al., 1988; Lee
et al., 2009; Buech et al., 2010; Pischiutta et al., 2010]. The possible role of topography on the GPS waveforms
has been investigated using a 2-D model with the following elastic and anelastic parameters: S and P wave
velocities of 1000 and 2000m/s, respectively, quality factors QS and QP (obtained simply dividing the veloc-
ities by 10) of 100 and 200, respectively, and mass density of 2.5 g/cm�3. Constraints on the velocities of this
model come from the MASW experiments (Figure 6). For simplicity, the relief is modeled as having uniform
rock properties and the adjacent Aterno basin is not included in the model, as the analysis is focused on the
role of the free surface lateral variations. The seismic response of the Mount Ocre topography to delta-like
Gabor seismic input was simulated through the code Web Interface for Seismological Applications (WISA)
that uses a finite-element approach with visco-elastic linear rheology [Caserta et al., 2002; Ruggiero et al..,
2004] and a user-friendly web interface to insert the corresponding 2-D model [Santoni et al., 2004].

The P-SV propagation was modeled for a vertically incident (in-plane) horizontally polarized pulse and the 2-D
simulations were made in the time domain. The numerical model with WISA uses a triangle mesh generator
(http://www.cs.cmu.edu/~quake/triangle.html). Our simulation provides reliable results up to 8Hz. Using synthetic
seismograms, the propensity of the topographic irregularity to amplify ground motion along the profile is esti-
mated using spectral ratios with respect to a reference site, which is the synthetic seismogram of the samemodel
without topography. These spectral ratios (Figure 7) show that the lateral variations of the free surface cause
ground motion amplification at high frequency (f> 5Hz) and the effect is smaller than a factor of 2 around 1Hz.
Although themodeling is very simple (2-D and uniform rock), the numerical simulations suggest that the peculiar
high-amplitude wave train around 1Hz cannot be produced by the lateral variations of topography. If the model

Figure 6. (a) Dispersion of Rayleigh waves obtained from active seismic experiments. The black curve with standard deviation is inferred from the MASW analysis, whereas the grey band
corresponds to the range of all dispersion curves of the best fitting models. (b) Vs profiles derived from the inversion of Figure 6a. (c) SH transfer functions for the best fitting models.
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velocities are reduced by a factor of 2 (not shown in figure) the amplification pattern does not change significantly
in amplitude and peaked frequencies, suggesting that no realistic velocity value can yield theoretical results
comparable to observations when uniform rock models are adopted.

Other possible mechanisms of amplification on mountains have been recently proposed in the literature
[Marzorati et al., 2011; Moore et al., 2011; Burjánek et al., 2012]. These authors ascribe the large directional
horizontal motions to resonance of fractured rock blocks on unstable slopes. Similarly to our observations, in
those papers the largest motions are transversal to the fracture orientation. Although a similar mechanism
could be in principle invoked for the high-amplitude horizontal motions of CADO, there is a critical difference.
These large horizontal motions are expected to occur as an amplification of the whole seismic signal, whereas
Avallone et al. [2011] demonstrated that the direct S waves of CADO are well fit by the rupture source model.
In the examined data, the 1Hz amplification is limited to a time window that begins 4.0 s after the S wave
arrival (Figure 4, left). For this reason a resonance of rock blocks does not seem to be fully convincing, leading
us to explore one more possible amplification mechanism.

4.3. Waveguide Effect

The local geologic conditions around CADO suggest the existence of a low-velocity damage zone (Figure 3)
associated with SW dipping normal faults located a few tens of meters to the west from the GPS site
(Figure 2). This suggests a possible interpretation of the high-amplitude wave train in terms of a waveguide
effect near the station. To examine the plausibility of this mechanism we fit the fault-parallel component
of the HRGPS high-amplitude wave train with synthetic calculations of fault zone-trapped waves. The
synthetic waveforms are generated using the analytical solution of Ben-Zion and Aki [1990] for an SH line
dislocation (i.e., slip parallel to the fault zone and the free surface) in a structure consisting of a low-velocity
vertical fault zone layer between two quarter spaces (Figure 8).

First, we constrained some parameters using independent data, such as the velocity value of the left quarter
space, the position of the GPS receiver in the fault zone and the source-receiver distance. Based on field
geological data (Figure 2), P wave refraction velocities of 4000–4500m/s estimated for shallow fractured
limestones [Improta et al., 2012] and assuming a VP/VS value of 1.9, the S wave velocity has been fixed at
2200m/s (and accordingly a Q of 250 is used). This value is consistent with a high VP/VS anomaly found in the
shallow crust (0–3 km depth) beneath the Aterno Valley by Di Stefano et al. [2011] and it is indicative of
fractured and water-saturated carbonates. The position of the GPS receiver is fixed close to the right interface
of the fault zone, roughly at the edge of the damage zone outlined by dolines and visible in Figure 3. This is
also consistent with the fact that we expect a higher fracturing of the limestones in the hanging wall side of
the nearby normal faults [Berg and Skar, 2005]. To estimate the source-receiver distance, we considered the
largest slip patch of the kinematic rupture model of Cirella et al. [2009] and Avallone et al. [2011]. This largest
patch was activated about 2 s after the nucleation and ~8 km to the SE; it reaches a maximum slip of about

Figure 7. (left) Location map of the profile AB used in the topographic simulations (dashed line). (right top) Topographic profile AB of the Mt. Ocre easternmost flank. The black dot indicates the
position of CADO on the profile AB. (right bottom) Color palette quantifying the amplification along the topography as a function of frequency as estimated through the numerical modeling.
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1.1m about 1.5 s later and ~3km to the NW from CADO, at depths of 11–12km beneath. Thus, a source-receiver
distance of 12 km appears to be reasonable for the main shock.

Second, using the above values of the Swave velocity andQ for the left quarter-space of Figure 9, the position
of the receiver and the source-receiver distance of 12 km, we fit the large-amplitude wave train. The fit is
obtained with a simple trial-and-error approach. The minimum misfit between the synthetic and the ob-
served waveforms (Figure 8) is found for the following model parameters: width of low-velocity fault zone of
650m; Swave velocity andQ value of the fault zone of 1300m/s and 20, respectively; Swave velocity andQ of
the right quarter-space of 2300m/s and 250, respectively. As shown in Figure 8, these parameters lead to
satisfactory modeling of both the amplitudes and phases of the observed large-amplitude oscillatory record.
A satisfactory fit is also obtained for the 7 April aftershock using the velocity structure of Figure 8 (Figure S3).

5. Discussion

The model used to calculate the synthetic waveforms has a small number of parameters that affect signifi-
cantly the generated guided waves. These are essentially the seismic velocity contrast of the fault zone layer
with the surrounding blocks, Q value of the fault zone and the ratio of propagation distance within the fault
zone layer divided by the fault zone width [Ben-Zion and Aki, 1990; Ben-Zion, 1998]. Some parameters are
constrained by independent data, as mentioned, and the other parameters leading to the waveform fit of
Figure 8 have reasonable values. The model simplicity and good obtained fit to the observed data suggest
that the large-amplitude anomalous record at CADO is produced at least partially by a waveguide effect.
There is inherent nonuniqueness in the model results related to trade-off among model parameters
[Ben-Zion, 1998], but constraining some parameters independently as done here reduces consider-
ably from the nonuniqueness.

The interpretation of the model parameters requires caution. The velocity and Q values of the bounding
blocks are assumed to represent average properties of the top few km sequence of the overlapped carbonate
thrust sheets outcropping in the area. The obtained best fitting model parameters are consistent with in-
dependent information. The width of the low-velocity block (about 650m) is consistent with the extension of
the zone inferred by the distribution of dolines on the carbonate ridge. Shear wave velocity values of the right
block of Figure 8 are compatible with Pwave velocities determined for the limestones underneath the Aterno

Figure 8. (top) Syntehtic waveform fit of the CADO fault-parallel displacement component. To take into account the considerable coseismic
static offset, the fault-parallel component has been vertically shifted to better compare the observed andmodeled trends. (bottom) A sketch
diagram of the fault model.
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valley by refraction tomography [Improta et al., 2012] and with high VP/VS values imaged in the shallow crust
[Di Stefano et al., 2011]. The extremely low Swave velocity value of the fault zone is in agreement with results
of the active seismic experiment (MASW) carried out around the CADO site and with the presence of highly
fractured and karst-weathered limestones. Those velocity values as well as the source-receiver distance
provide a time delay (~4 s) of the modeled high-amplitude signal (Figure 8) that is consistent with the time
delay between the S wave arrival and the beginning of the high-amplitude pulse in the observations (S and
T2, respectively, in Figure 4 left).

The existence of a wide damage zone with a seismic response similar to that of CADO is confirmed by
measurements of ambient noise in the crustal region adjacent to CADO. Although a large part of the area is
not accessible because of topographic variations and the accessible part is cultivated (therefore having in
many places soft soil outcrop), the ambient noise recorded at stiff sites (Figure 9) shows that the HVRSs
maintain the spectral signature of CADO for hundreds of meters to the SW of the GPS station, consistent with
the best fitting model. This feature decreases in intensity at locations with larger distances from CADO: the
1Hz peak tends to disappear at distances on the order of 1000m.

The validity of a fault zone excitation model is supported also by the different behavior of CADO during the
two strongest shocks of the L’Aquila seismic sequence and similarity of the anomalous features in the CADO
record to other observations involving fault zone-trapped waves. Both the nucleation of the largest slip patch
related to the main shock [Cirella et al., 2009; Avallone et al., 2011] and the hypocenter of the Mw 5.4 after-
shock [Chiaraluce et al., 2011] occurred roughly beneath the CADO GPS site but at slightly different depths:
~12 km for the main shock and ~15 km for the aftershock. Figure 10 shows a comparison of the CADO fault-
transversal component between the two events in terms of ground displacement (Figure 10a) and ground
acceleration (Figure 10b). Both horizontal ground displacements and accelerations differ by a factor of 10
between the two events. Note that the ground acceleration time series attained ~1 g during the main shock
in spite of the limited bandwidth (5 Hz), a value considerably larger than peak ground acceleration (PGA) of all
the nearby strong motion accelerometers that range between 0.3 and 0.6 g [Çelebi et al., 2010]. Similar large

Figure 9. Results of ambient noise measurements (red circles) performed in the study area. The T-array HVSR plots have the same axis ranges as the other HVSR plots shown in figure, but
they have been removed for clarity. There is significant stability of the directional spectral peak up to hundreds of meters from CADO (yellow marker), and the 1Hz peak tends to disappear
at distances of the order of 1000m.
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PGA and motion amplification were observed at a fault zone site above a trapping structure at the North
Anatolian Fault [Seeber et al., 2000; Ben-Zion et al., 2003; Peng and Ben-Zion, 2006].

The large difference in amplitude between the two events is in contrast with the expected scaling based on
seismic moments and stress drops. Calderoni et al. [2013] estimated 9 and 17MPa for the Mw 6.1 and 5.4
shocks, respectively; therefore, the much larger amplitude of the main shock cannot be due to a larger stress
drop of the main shock. Horizontal ground motion spectra of the two events (shown in Figure 10c) are very
coherent between 0.2 and 2Hz, which is the frequency band of the nearly harmonic excitation observed at
CADO. Above 2Hz, spectral bumps and holes occur at different frequencies in the spectra of the two events.
Examining the largest coherence frequency band 0.2–2Hz, we see that the spectral ratio of the maximum
amplitude component between the two events is far from the spectral-scaling expectation (the smooth curve
of Figure 10d). In contrast, both the vertical components of CADO and horizontal motions of the nearest
strong motion accelerograms in the town of L’Aquila (AQU, around 10 km from CADO) are satisfactorily fit by
the theoretical source scaling. This means that a strong propagation/site-related mechanism caused a dif-
ferent amplification of the horizontal motion during the two events. Three-dimensional numerical calcula-
tions of Fohrmann et al. [2004] show that the strength of excitation of trapped fault zone waves depends
strongly on the distance and orientation of the radiating source with respect to the low-velocity fault zone
layer. Due to the different source depth, a different coupling with the resonant fault zone is likely the reason
for the generation of oscillatory waveform with strong amplification during the shallower event.

6. Concluding Remarks

The nearly harmonic large-amplitude signal at the HRGPS CADO station appears to result from (i) the location
of the GPS site with respect to the source, above the causative fault and, in particular, above the largest slip
patch and (ii) the location of the GPS site with respect to the geological structure, within a crustal damage
zone characterized by highly fractured limestones. The recording of the signal was made possible by the high
sampling frequency (10Hz) at the GPS station, which is considerably higher than the traditional acquisition
rates (30 s or 1 s). The combination of all these effects was responsible for a ground acceleration of the order

Figure 10. Comparison of (a) fault-transversal ground displacements and (b) ground accelerations recorded at CADO during the Mw 6.1 on
6 April 2009 main shock (black trend) and the Mw 5.4 on 7 April 2009 aftershock (grey trend). (c) Black and grey trends correspond to the
spectral amplitudes of the fault-normal CADO components for the main shock and aftershock, respectively. (d) The spectral ratio of the
horizontal motion of CADO (red continuous line) is compared to the spectral ratio of the vertical component of CADO (green dotted line)
and the horizontal motion of AQU (blue dash-dotted line). For reference, the expected scaling law is superimposed (black dashed line) using
spectral parameters of Calderoni et al. [2013]. The spectral ratios are corrected for the distances of AQU and CADO from the sources.
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of 1 g at the CADO site, and this value is probably underestimated considering the limited frequency band
(Nyquist frequency of 5 Hz). The large acceleration of CADO resembles another case where about 1 g was
recorded at a fault damage zone [Seeber et al., 2000; Ben-Zion et al., 2003; Peng and Ben-Zion, 2006]. A similar
acceleration was also recorded on a hill (Tarzana) during the Mw 6.7 Northridge, California earthquake, and
tentatively ascribed to topography and other local complexities [Spudich et al., 1996]. However, a 3-D model
of the Tarzana hill did not provide evidence of a clear dependence of the large acceleration on the local
topographic features [Bouchon and Parker, 1996]. In our case we did not find a strong dependence of large
amplitudes on the topography based on a simplified 2-D model. The strong directional amplification of the
horizontal motion at CADO, which is seen also in the aftershock waveforms and the ambient noise record,
may indicate some rock block vibrations. Such a model has been recently proposed to explain directional
motions on unstable slopes in the southern Swiss Alps [Marzorati et al., 2011;Moore et al., 2011; Burjánek et al.,
2012]. However, the nearly harmonic motion at about 1Hz of the CADO ground motion during the main
shock suggests that a fault damage zone adjacent to the GPS station has a major role in explaining the
observations through excitation of resonant waves in an underlying low-velocity zone.
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